

Protein Hypernetworks

Johannes Köster

TU Dortmund, Informatik LS 11 Max-Planck-Institute of Molekular Physiology Dortmund

4. 5. 2010

Motivation

Proteins

- building blocks of cells
- execution of cellular functions
- three-dimensional structure
- binding domains for other proteins
- form networks of interactions

Motivation

Structure

- **1** Protein Hypernetworks
- 2 Prediction of Protein Complexes
- **3** Prediction of Functional Importance

Idea

Protein network (P, I)

Interaction dependencies not considered

Protein hypernetwork (P, I, C)

- Protein Network (P, I)
- Set C of propositional logic constraints q ⇒ ψ with q ∈ P ∪ I

Constraints

Allosteric effects

 $\{\mathbf{C}, \mathbf{B}\} \Rightarrow \{\mathbf{A}, \mathbf{B}\}$

Competition on binding domain

$$\{ \mathbf{C}, B \} \Rightarrow \neg \{ \mathbf{A}, B \}$$
$$\{ \mathbf{A}, B \} \Rightarrow \neg \{ \mathbf{C}, B \}$$

Minimal network states

Minimal network states (*Nec*, *Imp*) for $q \in P \cup I$

$$q \wedge \bigwedge_{c \in C} c$$

- Satisfying model $\alpha: P \cup I \rightarrow \{0,1\}$ by tableau algorithm
- Constraint $q' \Rightarrow \psi$ active iff $\alpha(q') = 1$
- For each constraint, the inactive case is expanded first
- Contains simultaneously necessary (*Nec*) and impossible (*Imp*) proteins and interactions

$$\mathit{Nec} := \{ q' \in \mathsf{P} \cup \mathsf{I} \mid \alpha(q') = 1 \}$$

 $\mathit{Imp} := \{ q' \in P \cup I \mid \alpha(q') = 0 \text{ by active } c \in C \}$

Proof: Tableau needs only $\mathcal{O}(|\mathcal{C}|)$ expansions

$$f = q \wedge \bigwedge_{c \in C} c$$

- Assumption: constraints c of the form $q_1 \Rightarrow I$, $I \in \{\neg q_2, q_2\}$ and f is satisfiable.
- Observation: Active constraint cannot become inactive again: Assume contradiction by *I*. *I* is backtracked and ¬*q*₁ is expanded again. Now ¬*q*₁ contradicts either *q* or another active constraint (apply argument recursively), so both branches are unsatisfiable *½*.
- Each c is expanded at most 2 times: Never activated: 1 expansion Immediate activation: 2 expansions Activation by backtracking: 2 expansions

Minimal network states

Clashes

Two minimal network states (*Nec*, *Imp*) and (*Nec'*, *Imp'*) are clashing iff

Nec
$$\cap$$
 Imp ^{\prime} \neq \emptyset or *Nec* ^{\prime} \cap *Imp* \neq \emptyset .

If a not clashing pair of minimal network states of two proteins or interactions exists, then the proteins or interactions are simultaneously possible.

Prediction of Protein Complexes

Network based

- Find dense regions in graph (e.g. clustering)
- ✓ May violate interaction dependencies

Hypernetwork based

- Network based complex prediction
- For each complex: calculate simultaneous subnetworks
- Perform network based complex prediction on the subnetworks
- Add all necessary interactions to complexes

Prediction of Protein Complexes

Results on the Yeast Protein Network

	precision	recall
plain (no constraints)	0.142	0.792
458 constraints	0.206	0.792
458 rand. constraints, mean (SD)	0.149 (0.005)	0.782 (0.02)

recall:
$$\frac{B-FN}{B}$$
, precision: $\frac{P-FP}{P}$

- Network: CYGD (4579 proteins, 12576 interactions)
- Constraints: Competition on binding sites (Jung et al. 2010)
- Complexes: CYGD (55 connected complexes)

Prediction of Functional Importance

Network based

- Plain node degree (Jeong et al. 2001)
- Interaction dependencies?

Hypernetwork based

- Minimal network state graph $G_{MNS} = (P \cup I, E)$ $(q', q) \in E$ for $q \in P \cup I$ and $q' \in Nec_q \cup Imp_q$
- BFS from each node
- Perturbation Impact Score

Prediction of Functional Importance

Perturbation Impact Score

$$\mathit{PlS}_{(P,I,C)}(\mathit{Q}_{\downarrow}) := \sum_{q \in \mathit{reach}_{\mathit{Q}_{\downarrow}}^{\mathsf{BFS}}} \mathit{dist}_{\mathit{Q}_{\downarrow}}^{\mathsf{BFS}}(q)$$

Protein Hypernetworks

Results

TP: lethal/sick and $PIS \ge t$, viable and PIS < t

- Network: CYGD (4579 proteins, 12576 interactions)
- Constraints: Competition on binding sites (Jung et al. 2010)
- Perturbations classified as lethal/sick and viable (SGD)

Protein Hypernetworks

Conclusion

- Hypernetworks as an extension of graph based network models
- Propositional logic constraints
- Minimal network states by tableau algorithm
- Improvements in complex prediction quality
- Improvements in functional importance prediction quality