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Definitions

Reference a consensus DNA sequence

Variant a local difference to the reference in the sequenced
sample

SNV single nucleotide variant

Indel an insertion or deletion

SNP single nucleotide polymorphism (a variant that recurs
in a population)

Allele One of all occuring variants at a specific locus
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Next-Generation-Sequencing

1 DNA/RNA is chopped into
small fragments.

2 Ligate adapters to both ends.

3 PCR amplify fragments to
obtain enough material.

4 Spread fragment solution across
a carrier (flowcell) with beads.

5 Amplify fragments into clusters
with PCR.

6 Fragments are sequenced from
one or both ends by adding
fluorescent complementary
bases → reads. Illumina, 2013



6 / 36
Genome Informatics

Detecting SNVs with Next-Generation-Sequencing

Idea:

• Get the difference (in terms of variants) of the sequenced
individuum to a reference genome.

Problems:

• huge amount of small reads, need to find their origin in the
reference genome

• PCR-duplicates

• expected sequencing error-rate of 2% → genetic variant or
error?
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Detecting SNVs with Next-Generation-Sequencing

How to distinguish genetic variation from technical errors?

• assuming technical errors are mostly random...

• sequence each portion of the genome as often as
possible → sequencing depth

• variants common in many reads can be considered true

• sequencing the whole genome at sufficient depth is expensive
→ concentrate on coding regions (exome sequencing)

• missing something? 85% of disease-causing mutations are
expected in the exome (Antonarakis et al. 1995).
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Workflow

1 read mapping

2 post-processing reads

3 variant calling

4 variant filtering

• Steps are handled by invoking command line tools on various
files.

• The workflow is managed by Snakemake (Köster and
Rahmann 2012).

• The variants are called by GATK (DePristo et al. 2011).

• The variants are stored and analysed with Exomate (Martin
et al. 2013).
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Snakemake

Problem:

• Bioinformatics analyses usually involve many steps.

• Often, command line utilities are used to create output files
from input files.

• Want to avoid redoing work by hand when new samples arrive
or parameters change.

Our solution:

• Snakemake, a text-based workflow management system.

• Snakemake allows to plug the steps together by matching
filenames with wildcards.

• Upon changes/additions of samples, necessary parts of the
workflow can be automatically recomputed.



11 / 36
Genome Informatics

Snakemake

SAMPLES = ["500", "501", "502", "503"]

rule all:

input: expand("{sample}.bam", sample=SAMPLES)

rule sai_to_bam:

input: "hg19.fasta", "{sample}.sai", "{sample}.fastq"

output: "{sample}.bam"

shell:

"bwa samse {input} | samtools view -Sbh - > {output}"

rule map_reads:

input: "hg19.fasta", "{sample}.fastq"

output: "{sample}.sai"

shell: "bwa aln {input} > {output}"

rule all
500.bam, 501.bam, 502.bam, 503.bam

rule sai to bam
500.sai

rule map reads
500.fastq

rule sai to bam
501.sai

rule map reads
501.fastq

rule sai to bam
502.sai

rule map reads
502.fastq

rule sai to bam
503.sai

rule map reads
503.fastq
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Read Mapping

?
? ?
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Read Mapping

For each read...
find position(s) with optimal alignment(s) to either strand of the
reference:

ACTGTGGACTATCAATGGAC
GGTACTGT CTATCTATGGACCGTTAG

Too slow, therefore heuristics to find anchor positions:

• suffixarray/Burrows-Wheeler-Transformation (BWA, bowtie2)

• q-gram indices

• hashing
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Post-Processing Reads

• Remove PCR duplicates.

• Empirically recalibrate
reported base qualities:
dinucleotide context,
platform specific
covariates.

• Realign reads around
indels
(multiple alignment for all
reads during read
mapping is infeasible).

Before indel re-alignment

Aer indel re-alignment

Read 1

Read 1

Read 2

Read 2



17 / 36
Genome Informatics

Outline

1 Next-Generation-Sequencing

2 Workflow

3 Read Mapping

4 Post-Processing Reads

5 Variant Calling

6 Variant Filtering



18 / 36
Genome Informatics

Genome Analysis Toolkit

The Genome Analysis Toolkit (DePristo et al. 2011) is a collection
of tools around variant calling.

• Variant calling with GATKs UnifiedGenotyper.

• Calls multiple samples simultaneously.

• Given the reads at each genome position, estimates the
probability of having only the reference allele.
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Variant Calling

Given a genomic position we assume to have

• for each sample i a set of aligned bases Di

• a reference allele A

• an alternative allele B

Probability to observe base Di ,j under allele X :

P(Di ,j |X ) =

{
1− εi ,j if Di ,j = X

εi ,j · ci ,j else

εi ,j miscall probability given the base-quality of Di ,j

ci ,j probability of X being the true allele given that Di ,j

was miscalled (technology specific):

Illumina:

A C G T
A - 0.58 0.17 0.25
C 0.35 - 0.11 0.54
G 0.32 0.05 - 0.63
T 0.46 0.22 0.32 -



20 / 36
Genome Informatics

Variant Calling

So far:

• Aligned bases Di , reference allele A, alternative allele B.

• Probabilty P(Di ,j |X ) to observe Di ,j under allele X .

Probabilty to observe base Di ,j under genotype GT = XY :

P(Di ,j |GT = XY ) =
P(Di ,j |X ) + P(Di ,j |Y )

2
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Variant Calling

So far:

• Aligned bases Di , reference allele A, alternative allele B.

• Probabilty P(Di ,j |GT ) to observe Di ,j genotype GT .

Probability of aligned bases under genotype GT :

P(Di |GT ) =
∏
j

P(Di ,j |GT )
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Variant Calling

So far:

• Aligned bases Di , reference allele A, alternative allele B.

• Probability P(Di |GT ) of aligned bases under genotype GT .

Probability of pileup D given that the B allele resides on q = m
chromosomes in total:

P(D|q = m) =
∑

GT∈Γm

∏
i

P(Di |GTi )

qi the number of B alleles in sample i (0,1,2)

Γq the set of genotype assignments such that
∑

i qi = q
q = 0 : {(AA,AA, . . . )}
q = 1 : {(AB,AA,AA . . . ), (AA,AB,AA . . . ), . . . }
q = 2 : {(AB,AB,AA . . . ), (BB,AA,AA . . . ), . . . }
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Variant Calling

So far:

• Aligned bases Di , reference allele A, alternative allele B.

• Probability P(D|q = m) of all aligned bases under allele
frequency q = m.

General probabilty of having an allele frequency of q = m for n
samples (infinite-site neutral variation model):

P(q = m) =

{
Θ
m if m > 0

1−Θ
∑2n

i=1
1
i else

Θ expected heterozygosity (probability to have a non
reference allele)
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Variant Calling

So far:

• Aligned bases Di , reference allele A, alternative allele B.

• Probability P(D|q = m) of all aligned bases under allele
frequency q = m.

• General probability P(q = m) of allele frequency q = m.

Probability of allele frequency q = m given the aligned bases:

P(q = m|D) =
P(q = m)P(D|q = m)∑
m′ P(q = m′)P(D|q = m′)
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Variant Calling

So far:

• Aligned bases Di , reference allele A, alternative allele B.

• Probability P(q = m|D) of allele frequency q = m given all
aligned bases D.

Phred-scaled probability of having no alternative alleles at the site
of interest

QUAL = −10 · log10 P(q = 0|D)

Consider sites as potentially variable if

• QUAL ≥ 50 (i.e. p-value ≤ 10−5) for deep coverage

• QUAL ≥ 10 (i.e. p-value ≤ 0.1) for shallow coverage
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Example

AACTCG
ACTCGCTT

CTCGC
GAACTCGCT

GGAACACGCTTGACT

P(q = 0) = 1− 0.001− 1

2
0.001 = 0.9985

P(D|q = 0) = P(Di |AA) =
∏
j

2P(Di,j |A)

2
=

∏
j

εi,jci,j

P(D|q = 1) = P(Di |AT ) =
∏
j

P(Di,j |A) + P(Di,j |T )

2
=

∏
j

εi,jci,j + 1− εi,j
2

P(D|q = 2) = P(Di |TT ) =
∏
j

P(Di,j |T ) =
∏
j

(1− εi,j)

P(q = 0|D) =
P(q = 0)P(D|q = 0)∑2

m=0 P(q = m)P(D|q = m)
= 0.001 with εi,j = 0.02∀i , j
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Example

AACTCG
ACTCGCTT

CTCGC

GAACTCGCT
GGAACACGCTTGACT

P(q = 0) = 1− 0.001− 1

2
0.001 = 0.9985

P(D|q = 0) = P(Di |AA) =
∏
j

2P(Di,j |A)

2
=

∏
j

εi,jci,j

P(D|q = 1) = P(Di |AT ) =
∏
j

P(Di,j |A) + P(Di,j |T )

2
=

∏
j

εi,jci,j + 1− εi,j
2

P(D|q = 2) = P(Di |TT ) =
∏
j

P(Di,j |T ) =
∏
j

(1− εi,j)

P(q = 0|D) =
P(q = 0)P(D|q = 0)∑2

m=0 P(q = m)P(D|q = m)
= 0.96 with εi,j = 0.02∀i , j
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Quality Covariates

QUAL alone covers only part of the truth...

• base quality

• technology specific miscall rates

Systematic sequencing errors have to be measured with covariates,
e.g.

strand bias Is read strand independent of allele?

mapping qual Is mapping quality independent of allele?

read positon Is variant position in the read independent of
allele?

haplotype score Do the reads agree regarding induced
haplotypes?
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Estimating FDR

Wikipedia, 2013

Investigate the transition-transversion-rate (TiTv-rate).
• random variation (artifacts) would yield a rate of 0.5
• genetic variation is expected to yield a rate TiTvexp = 3.2
• transitions are more likely synonymous

Hence, FDR can be estimated as

1− TiTvobs − 0.5

TiTvexp − 0.5
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Variant Filtering

SNV types:

synonymous encoded amino acid not changed

missense amino acid changed

nonsense regular codon becomes stop-codon

read-through stop-codon becomes regular codon

Discard variants that are . . .

• synonymous

• low quality

• known from healthy samples

• tolerated (e.g. according to SIFT (Kumar et al. 2009))
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Exomate

• store variants in database

• perform filtering online with adjustable parameters and
samples

• provide a web interface
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Exomate

Annotate, aggregate, subtract, sort, . . .
This is what relational databases and the Structured Query
Language (SQL) are designed for:

SELECT * FROM calls WHERE qual >= 50;
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Database layout

Known variant

Feature Transcript Gene

Annotation

Variant

Call

Run Capture kit Disease

Sample PatientLibrary

Source

Unit

1 1 1

1

1

1

1

11

1

1 1

1

1n

n n n
n n n

n

n

n

n

n n

n

Variant id, chrom, pos, ref, alt

Call variant id, sample id, qual, strand bias, . . .

Advantages of separating variants from calls:

• avoid redundancy in database

• lightweight filtering of calls without knowledge about the
whole variant
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Filtering algorithm

Given two sets of samples:

affected those we want to find mutations on

unaffected samples whose variants we want to subtract (e.g.
healthy tissue)

1 retrieve all calls from unaffected samples above a given quality

2 obtain all calls from affected samples above a given quality
and subtract (LEFT OUTER JOIN) above unaffected calls

3 subtract non-clinical known variants (dbsnp, . . . )

4 associate (JOIN) annotations (synonymous, intronic, . . . ) to
calls

Gene Common Sample Transcripts Nucleotide Codon Amino acid Type Region Splice Quality

1 ARID1A 1 M45227 001, 201, 002, more C→ T CGA→ TGA R→ * Nonsense Coding 75.19 1:27106354

2 ARID1B 1 M45224 201, 203, 009, more C→ T CGA→ TGA R→ * Nonsense Coding 37.98 6:157406006

3 SMARCB1 1 M44263 005, 001, 002, 003 G→ A CGG→ CAG R→ Q Missense Coding Splice 224.79 22:24176330

Location



35 / 36
Genome Informatics

Special thank goes to Marcel Martin, whose PhD thesis
“Algorithms and Tools for the Analysis of High-Throughput DNA
Sequencing Data” served as template for many of the slides.
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