Protein Hypernetworks

Johannes Köster, Eli Zamir, Sven Rahmann

August 20, 2012

Interaction maps (undirected graphs)

Protein Network Modelling

Interaction maps (undirected graphs)

Differential equations
(Law of Mass Action),

$$
\frac{\mathrm{d}[C]}{\mathrm{d} t}=k_{\mathrm{on}}[A][B]-k_{\text {off }}[C]
$$

Bayesian Networks, ...

Interaction maps (undirected graphs)

Differential equations
(Law of Mass Action),

$$
\frac{\mathrm{d}[C]}{\mathrm{dt}}=k_{\mathrm{on}}[A][B]-k_{\text {off }}[C]
$$

Bayesian Networks, ...

Interaction maps (undirected graphs)

Protein Hypernetworks

?

1 Protein Hypernetworks

2 Mining Protein Hypernetworks

3 Data Aquisition

Protein Network (P, I)

Protein Network (P, I)

Protein Hypernetwork (P, I, C)

Protein Network (P, I)

Boolean Logic Constraints C

$$
\{G, H\} \Rightarrow\{I, H\}
$$

$$
\begin{aligned}
& \{A, B\} \Rightarrow \neg\{G, B\} \\
& \{G, B\} \Rightarrow \neg\{A, B\}
\end{aligned}
$$

Mining Protein Hypernetworks

Protein Hypernetwork (P, I, C)

Protein Hypernetwork (P, I, C)

Minimal network states (Nec, $I m p$) for $q \in P \cup I$

$$
q \wedge \bigwedge_{c \in C} c
$$

- Satisfying model $\alpha: P \cup I \rightarrow\{0,1\}$ by tableau algorithm

$$
\begin{aligned}
& \text { Nec }:=\left\{q^{\prime} \in P \cup I \mid \alpha\left(q^{\prime}\right)=1\right\} \\
& \operatorname{Imp}:=\left\{q^{\prime} \in P \cup I \mid \alpha\left(q^{\prime}\right)=0 \text { due to active } c \in C\right\}
\end{aligned}
$$

Propositional Logic Tableau

 Algorithm for a given formula f- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$ ।

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f

■ each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

$$
\begin{aligned}
& A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E) \\
& A B \\
& (A B \Rightarrow B C) \\
& (C D \Rightarrow \neg D E) \\
& \neg A B \text { \& } \\
& B C \\
& \neg C D \checkmark
\end{aligned}
$$

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f

■ each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$
।
$(A B \Rightarrow B C)$
।
$(C D \Rightarrow \neg D E)$
$\neg A B$ \&
$B C$
$\neg C D \checkmark$

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f

■ each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$
।

$$
(A B \Rightarrow B C)
$$

।
$(C D \Rightarrow \neg D E)$
$\neg A B$ \&
$B C$
$\neg C D \checkmark$

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$ ।

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$ ।

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$
।

Propositional Logic Tableau

 Algorithmfor a given formula f

- explore depth-first the tree of deductions from root f

■ each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model
$A B \wedge(A B \Rightarrow B C) \wedge(C D \Rightarrow \neg D E)$
$A B$
।

Clashes

Two minimal network states ($\mathrm{Nec}, \mathrm{Imp}$) and ($\mathrm{Nec}^{\prime}, ~ I m p^{\prime}$) are clashing iff
$N e c \cap I m p^{\prime} \neq \emptyset$ or $N e c^{\prime} \cap I m p \neq \emptyset$.
not clashing pair \rightarrow interactions simultaneously possible

Clashes

Two minimal network states ($\mathrm{Nec}, \mathrm{Imp}$) and ($\mathrm{Nec}^{\prime}, ~ I m p^{\prime}$) are clashing iff

$$
N e c \cap I m p^{\prime} \neq \emptyset \text { or } N e c^{\prime} \cap I m p \neq \emptyset .
$$

not clashing pair \rightarrow interactions simultaneously possible

Clashes

Two minimal network states ($\mathrm{Nec}, \mathrm{Imp}$) and ($\mathrm{Nec}^{\prime}, I m p^{\prime}$) are clashing iff
$N e c \cap I m p^{\prime} \neq \emptyset$ or $N e c^{\prime} \cap I m p \neq \emptyset$.
not clashing pair \rightarrow interactions simultaneously possible

Network based complex prediction

- e.g. dense regions

Network based complex prediction

- e.g. dense regions

Maximal combinations of minimal network states

Network based complex prediction

- e.g. dense regions

Maximal combinations of minimal network states

Refined complexes

- no violated constraints

Minimal network state graph

Minimal network states

Minimal network state graph

Breadth first search from each node

Minimal network state graph

Breadth first search from each node

Perturbation Impact Score

$$
P I S_{(P, I, C)}\left(Q_{\downarrow}\right):=\left|B F S\left(Q_{\downarrow}\right)\right|
$$

Text-Mining

■ Observation: Interaction dependencies are reported as single sentence natural language statements in literature.

- Tokenize full-text papers into relevant words and search for simple regular expression patterns.

71 new interaction dependencies from 59000 human adhesome related papers.

Köster, Zamir, Rahmann. 2012

■ Network: CYGD (4579 proteins, 12576 interactions)
■ Constraints: Competition on binding sites (Jung et al. 2010)
■ Complexes: CYGD (55 connected complexes)
■ Network based complex prediction: LCMA (Li et al. 2005)

■ Network: CYGD (4579 proteins, 12576 interactions)
■ Constraints: Competition on binding sites (Jung et al. 2010)

- Perturbations classified as lethal/sick and viable: SGD

TP: lethal/sick and PIS $\geq t$, viable and $P I S<t$

Protein Hypernetworks

Conclusion

Using the Quine-McCluskey-Algorithm

- Given a truth table with interactions in columns and simultaneous observations in rows.
- Infer logic relationships using the Quine-McCluskey-Algorithm.

AB	BC	observed
0	0	1
0	1	1
1	0	1
1	1	0

Inferred constraints:
$A B \Rightarrow \neg B C$

Using the Quine-McCluskey-Algorithm

- Given a truth table with interactions in columns and simultaneous observations in rows.
- Infer logic relationships using the Quine-McCluskey-Algorithm.
derive rows from
- simultaneous interaction measurements (e.g. future variants of FCS)
- combination of protein complex measurements (e.g. MS) with binary protein interactions

AB	BC	observed
0	0	1
0	1	1
1	0	1
1	1	0

Inferred constraints: $A B \Rightarrow \neg B C$

