

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Protein Hypernetworks

Johannes Köster, Eli Zamir, Sven Rahmann

August 20, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Interaction maps (undirected graphs)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Interaction maps (undirected graphs)

Differential equations (Law of Mass Action), Bayesian Networks, ...

$$\frac{\mathrm{d}[C]}{\mathrm{d}t} = k_{\mathrm{on}}[A][B] - k_{\mathrm{off}}[C]$$

Genome Informatics

Genome Informatics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Protein Hypernetworks

2 Mining Protein Hypernetworks

3 Data Aquisition

Idea

Idea

Idea

Protein Hypernetwork (P, I, C)

Mining Protein Hypernetworks

Protein Hypernetwork (P, I, C)

Mining Protein Hypernetworks

Protein Hypernetwork (P, I, C)

Minimal network states (*Nec*, *Imp*) for $q \in P \cup I$

$$q \wedge \bigwedge_{c \in C} c$$

Satisfying model $\alpha: P \cup I \rightarrow \{0,1\}$ by tableau algorithm

$$\begin{split} \textit{Nec} &:= \{q' \in P \cup \textit{I} \mid \alpha(q') = 1\}\\ \textit{Imp} &:= \{q' \in P \cup \textit{I} \mid \alpha(q') = 0 \text{ due to active } c \in \textit{C}\} \end{split}$$

Genome Informatics

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ \downarrow $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ \downarrow $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ | $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ \downarrow $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ \downarrow $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ | $\neg CD \checkmark$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ \downarrow $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree
 of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ AB $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ | BC | $\neg CD \checkmark$

Genome Informatics

Propositional Logic Tableau Algorithm

for a given formula f

- explore depth-first the tree of deductions from root f
- each root-leaf-path without contradiction is a satisfying model

Modifications

- expand disjunctions from left to right
- allow to pre-block subformulas to guide the algorithm to the right model

 $AB \land (AB \Rightarrow BC) \land (CD \Rightarrow \neg DE)$ $AB \land (AB \Rightarrow BC)$ $(AB \Rightarrow BC)$ $(CD \Rightarrow \neg DE)$ $\neg AB \notin BC$ \Box \Box $CD \checkmark$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Minimal Network States

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Clashes

Two minimal network states (*Nec*, *Imp*) and (*Nec'*, *Imp'*) are clashing iff

 $Nec \cap Imp' \neq \emptyset$ or $Nec' \cap Imp \neq \emptyset$.

not clashing pair \rightarrow interactions simultaneously possible

Minimal Network States

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Clashes

Two minimal network states ($\mathit{Nec},\mathit{Imp}$) and ($\mathit{Nec'},\mathit{Imp'}$) are clashing iff

$$Nec \cap Imp' \neq \emptyset$$
 or $Nec' \cap Imp \neq \emptyset$.

not clashing pair \rightarrow interactions simultaneously possible

Minimal Network States

Clashes

Two minimal network states (Nec, Imp) and (Nec', Imp') are clashing iff

$$Nec \cap Imp' \neq \emptyset$$
 or $Nec' \cap Imp \neq \emptyset$.

not clashing pair \rightarrow interactions simultaneously possible

Prediction of Protein Complexes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Network based complex prediction

e.g. dense regions

Prediction of Protein Complexes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Prediction of Protein Complexes

Prediction of Functional Importance

(日)、

э

Prediction of Functional Importance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Prediction of Functional Importance

Harvesting Constraints

Text-Mining

- Observation: Interaction dependencies are reported as single sentence natural language statements in literature.
- Tokenize full-text papers into relevant words and search for simple regular expression patterns.

71 new interaction dependencies from 59 000 human adhesome related papers.

Köster, Zamir, Rahmann. 2012

Results for Complex Predicton

- Network: CYGD (4579 proteins, 12576 interactions)
- Constraints: Competition on binding sites (Jung et al. 2010)
- Complexes: CYGD (55 connected complexes)
- Network based complex prediction: LCMA (Li et al. 2005)

Results for Perturbation Impact Score

- Network: CYGD (4579 proteins, 12576 interactions)
- Constraints: Competition on binding sites (Jung et al. 2010)
- Perturbations classified as lethal/sick and viable: SGD

TP: lethal/sick and $PIS \ge t$, viable and PIS < t

Conclusion

Protein Hypernetworks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Harvesting Constraints

Using the Quine-McCluskey-Algorithm

- Given a truth table with interactions in columns and simultaneous observations in rows.
- Infer logic relationships using the Quine-McCluskey-Algorithm.

AB	BC	observed
0	0	1
0	1	1
1	0	1
1	1	0

Inferred constraints: $AB \Rightarrow \neg BC$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Using the Quine-McCluskey-Algorithm

- Given a truth table with interactions in columns and simultaneous observations in rows.
- Infer logic relationships using the Quine-McCluskey-Algorithm.

derive rows from

- simultaneous interaction measurements (e.g. future variants of FCS)
- combination of protein complex measurements (e.g. MS) with binary protein interactions

AB	BC	observed
0	0	1
0	1	1
1	0	1
1	1	0

Inferred constraints: $AB \Rightarrow \neg BC$

