Massively parallel read mapping on graphics cards

Johannes Köster

May 15, 2014

Next-Generation-Sequencing of DNA

2 Read Mapping

6 Algorithm

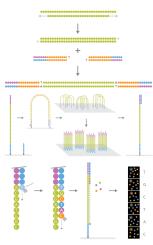
Next-Generation-Sequencing of DNA

Read Mapping

Algorithm

Next-Generation-Sequencing

- Chop DNA/RNA into small fragments.
- 2 Ligate adapters to both ends.
- Spread fragment solution across a flowcell with beads.
- Amplify fragments into clusters (PCR).
- Sequence fragments by adding fluorescent complementary bases ► reads.



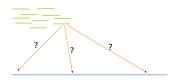
Next-Generation-Sequencing of DNA

2 Read Mapping

Algorithm

Read Mapping

For each read... find position in the known reference genome.



- A DNA sequence is a word over $\Sigma = \{A, C, G, T\}$.
- string matching, but with error tolerance

Read Mapping

For each read...

find position(s) with optimal alignment(s) to either strand of the reference:

ACTGTGGACTATCAATGGAC GGTACTGT CTATCTATGGACCGTTAG

Smith Waterman Algorithm

Too slow, therefore heuristics to find anchor positions:

- suffixarray/Burrows-Wheeler-Transformation (BWA, bowtie2)
- q-gram indices (RazerS3)

Read mapping on GPUs

Challenges:

- limited and slow memory
- branching interrupts parallelism

- q-gram index
 - ∮ BWT

Idea:

- Use a special q-gram index with small memory footprint.
- Use parallelism to hide memory latency.
- Export branching into bitvector operations.
- ▶ PEANUT the ParallEl AligNment UTility

Next-Generation-Sequencing of DNA

Read Mapping

3 Algorithm

Algorithm

Main steps:

- Filtration
 find potential hits between reads and reference
 using a special q-gram index
- Validation validate hits using a bit-parallel alignment algorithm

Algorithm

Main steps:

- Filtration
 find potential hits between reads and reference using a special q-gram index
- Validation validate hits using a bit-parallel alignment algorithm

Q-Gram Index

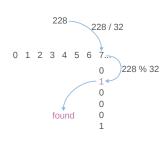
For a given DNA sequence T:

- consider q-grams (substrings of length q) GGTACTGACGTTCTATGGACCGTTAG
- encode them as integers
 ACGT = 11 10 01 00 = 228
- array P with concatenation of q-gram positions
- array Q with address in P for each q-gram
- \triangleright size $4^q + |T|$

$$P[Q[228]] \dots P[Q[229]]$$

Q-Group Index

- assign each q-gram to a q-group $\lfloor g/w \rfloor$
- store occurrence of q-gram in a bit-vector
- two address arrays guide from q-group to positions of the q-gram in the text
- size $2/w \cdot 4^q + \min\{4^q, |T|\} + |T|$



Q-Group Index

less memory, because we consider only...

- q-groups at the top level
- occuring q-grams at the bottom

calculate adress ranges in parallel by

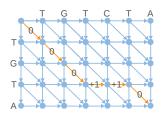
- population counts
- prefix-sums

Algorithm

Main steps:

- Filtration
 find potential hits between reads and reference
 using a special q-gram index
- Validation
 validate hits
 using a bit-parallel alignment algorithm

Validation



Observations:

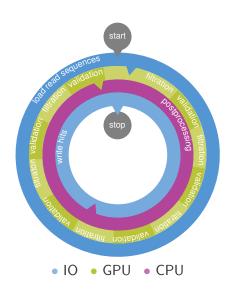
- ullet calculating column j needs only column j-1
- each transition changes edit distance by at most 1

Myers bit-parallel algorithm¹:

- process graph column-wise
- maintain distance deltas in bitvectors

Workflow

- load reads into buffer
- build q-group index of reads
- filtration of hits
- validation of hits
- postprocessing
- writing

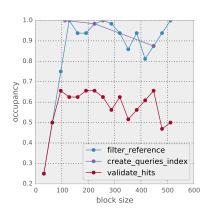


Next-Generation-Sequencing of DNA

Read Mapping

Algorithm

A Results



Sensitivity

- assessed with Rabema² benchmark on S. cerevisiae genome
- 100% for reads with error rate less than 7%
- 99.77% for error rates up to 10%
- 98.97% for error rates up to 20%

Performance

Output types:

all alignments of a read best one of the best alignments

best-stratum all best alignments

5 million simulated human reads:

mapper	type	time [min:sec]	sens. [%]
PEANUT	best-stratum	1:55	98.62 96.99 96.85
BWA-MEM	best	3:16	
Bowtie 2	best	5:21	
PEANUT	all	18:29	98.74
RazerS 3	all	199:55	98.83

Intel Core i7, 16GB RAM NVIDIA Geforce 780, 3GB RAM

Performance

5 million real human exome reads:

mapper	type	time [min:sec]
PEANUT	best-stratum	1:33
BWA-MEM	best	1:58
Bowtie 2	best	3:12
PEANUT	all	10:52
RazerS 3	all	89:38

Intel Core i7, 16GB RAM NVIDIA Geforce 780, 3GB RAM

Performance

10 million human exome paired end reads:

mapper	type	time [min:sec]
PEANUT	best-stratum	3:08
BWA-MEM	best	4:44
Bowtie 2	best	8:18
PEANUT	all	21:54
RazerS 3	all	150:59

Intel Core i7, 16GB RAM NVIDIA Geforce 780, 3GB RAM

Summary

PEANUT is a GPU based read mapper that outperforms other state-of-the-art mappers in terms of

- sensitivity
- speed

by introducing the q-group index with small memory footprint and exploiting

- bit-vector operations
- prefix sums
- population counts

http://peanut.readthedocs.org