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Introduction

Variant calling on NGS data often entails filtering samples against each other
to e.g.
• detect de-novo mutations (child vs. parents, tumor vs. normal),

• eliminate sequencing artifacts.
This can be formulated as set operations, e.g.

VA \ (VB ∪ VC)
with VA, VB and VC being the true variant loci of sample A,B and C. Of
course, these sets are unknown. The state of the art is to call variants of each
sample, and perform set-based filtering afterwards.

This gives rise to three problems:

Insufficient evidence problem The filtering fails if the coverage is too low.

N + 1 problem Calling samples in groups helps with the insufficient evidence
problem. But later addition of new samples leads to redundant calculations.

FDR problem The obtained variant qualities do not reflect the filtering. This
makes controlling the false discovery rate (FDR) difficult.

Apart from specialized solutions for Tumor/Normal pairs, no solution for
generic filtering scenarios exists that solves all problems.

We present Algebraic Variant Calling, an approach to incorporate the fil-
tering into the calling model. Algebraic Variant Calling solves the insufficient
evidence problem and provides intuitive FDR control. In the ALgebraic PArallel
CAller (ALPACA), we combine Algebraic Variant Calling with a BCF based
approach to solve the N+1 problem.

Algebra of variant loci

For a finite set of samples S = {s1, s2, . . . } with variant loci VS =
{Vs1, Vs2, . . . }, we define the algebra

AS =

(
2VS \ ∅,∪, \,

(⊗k
)
k∈N

)
with the classic set operations union ∪ and difference \ and a k-relaxed
intersection

⊗k. The k-relaxed intersection
⊗k

s∈S ′ Vs for subset S ′ ⊆ S
with |S ′| ≥ k is the set of variant loci common to at least k of the samples in S ′.

This allows all kinds of filtering scenarios, e.g.

•Call all variants in any of the samples a, b, c:

Va ∪ Vb ∪ Vc
•Call somatic mutations in e.g. a tumor sample t compared to a healthy

normal sample n:
Vt \ Vn

•Call de-novo mutations in a child sample c compared to its parents f,m:

Vc \ (Vf ∪ Vm)

•Call somatic mutations in a group of tumors t, t′ compared to their nor-
mals n, n′:

(Vt ∪ Vt′) \ (Vn ∪ Vn′)
•Do the same in a paired way:

(Vt \ Vn) ∪ (Vt′ \ Vn′)

•Call all variants that are recurrent in at least 3 of the samples a, b, c, d, e:⊗3

s∈{a,b,c,d,e}
Vs

Algebraic variant calling

For any scenario φ ∈ AS, we calculate the posterior probability for the null
hypothesis i 6∈ φ for each locus i. If φ =

⋃
s∈S ′⊆S Vs, we calculate

Pr(i 6∈ φ |DS,i) := Pr(M = 0 |DS ′,i)

e.g. in the usual Bayesian way (dePristo et al. 2011, Li 2010). If φ = φ1 \ φ2,
we write

Pr(i 6∈ φ |DS,i) := 1− Pr(i ∈ φ1 |DS,i) · Pr(i 6∈ φ2 |DS,i),

and φ = φ1 ∪ φ2 leads to

Pr(i 6∈ φ |DS,i) := Pr(i 6∈ φ1 |DS,i) · Pr(i 6∈ φ2 |DS,i).

For the k-relaxed intersecton φ =
⊗k

i=1,2,... φi we can calculate Pr(i 6∈ φ |DS,i)
with dynamic programming.
Finally, we can approximate φ as

φ∗α := {i | ∀i = 1, 2, . . . , n : Pr(i ∈ φ|DS,i) ≤ α}.

Controlling FDR

FDR can be controlled to not exceed α∗ by setting the threshold

α = max{α′ ∈ [0, α∗] | FDRα′ ≤ α∗}
with

FDRα =
1

|φ∗α|
∑
i∈φ∗α

Pr(i 6∈ φ|DS,i).

Solving the N+1 problem

The probability Pr(M = 0|DS,i) is calculated from per-sample genotype likeli-
hoods

Pr(Ds,i|G = g)

with G being the random variable denoting possible genotypes. Ds,i is the
pileup of read bases of sample s at locus i. The likelihoods are independent of
the query formula φ, hence:

•Genotype likelihoods for all covered loci can be preprocessed into per-
sample BCF files.

• Sample BCF files can be merged into a global BCF, keeping only loci with
any non-reference maximum likelihood genotype.

•Calling with different scenarios φ ∈ AS becomes a matter of seconds.
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Since posterior proba-
bilities reflect the given
query, controlling FDR
becomes easy.

When a new sample
is added, previous ones

can remain untouched.


