
BioinformaticsWorkflowswithSnakemake
Johannes Köster

Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen
Paediatric Oncology, University Hospital Essen

CONTRIBUTION

In most bioinformatics analyses, many different files are created by the combination of various tools. A sophisticated workflow management eases
the inclusion of new datasets and parameter changes and ensures reproducibility. Snakemake is a workflow engine that combines an easy to read
text-based definition language with a versatile execution environment that is scalable from single core machines over multi-core servers to clusters.

IDEA

In Snakemake, a workflow is defined in terms of rules, that create output files from input files by applying a command line tool or executing Python or R:

DATASETS = [" 5 5 2 " , "553" , "554" , "555 "]

rule a l l :
input : expand (" expressions / { ds } . expressions . t x t " , ds=DATASETS) ,

" s t a t s / mirnareads . t x t "

rule map_against_mirbase :
input : r e f =" mirbase / embedded−mirnas . fa " ,

reads =" reads / { ds } . f as tq . gz "
output : temp (" mapped / { ds } . bam")
threads : 4
shel l : " sqt−bwa − t { threads } −r { input . r e f } { output } { input . reads } "

rule sort_bam :
input : " { p r e f i x } . bam"
output : p ro tec ted (" { p r e f i x } . sor ted .bam")
shel l : " samtools s o r t { input } { wildcards . p r e f i x } . sor ted "

rule count_mirna_expressions :
input : "mapped / { ds } . sor ted .bam"
output : " expressions / { ds } . expressions . t x t "
shel l : " sqt−bamstats - -q u a l i t y 1 - -maximum−s t a r t 3 { input } >> { output } "

rule count_reads_wi th_mirna_length :
input : expand (" reads / { ds } . f as tq . gz " , ds=DATASETS)
output : t x t =" s t a t s / mirnareads . t x t "
run :

with open (output . t x t , "w") as out :
for f in input :

mirna_reads = sum(count
for length , count in readlength_his togram (f)
i f MIRNA_MIN <= leng th <= MIRNA_MAX)

p r i n t (wildcards . ds , mirna_reads , f i l e =out)

define your workflow
in terms of rules
that create output from
input files

invoke shell
commands

script in
Python or R

collect your results
with target rules

schedule intermediate
files for cleanup

write-protect
important results

use wildcards
for generalization

assign names to
input and output files

FROM RULES TO JOBS

Dependencies between the rules are determined automatically by match-
ing input files against output files. This yields a directed acyclic graph of
jobs (DAG) that represents the execution plan of Snakemake. Jobs are
only executed if their output files are not present, at least one input file is
newer that an output file, or if execution is forced via the command line.

all

count_mirna_expressions
ds: 555

count_mirna_expressions
ds: 552

count_reads_with_mirna_length

count_mirna_expressions
ds: 553

count_mirna_expressions
ds: 554

sort_bam
prefix: mapped/555

sort_bam
prefix: mapped/552

sort_bam
prefix: mapped/553

sort_bam
prefix: mapped/554

map_against_mirbase
ds: 555

map_against_mirbase
ds: 552

map_against_mirbase
ds: 553

map_against_mirbase
ds: 554

Jobs that lie on the same path are dependent on each other. Independent
jobs can be executed in parallel. Snakemake provides a scheduling mech-
anism that maximizes the usage of given cores with respect to threads,
priorities and input file sizes by solving a knapsack problem.

FEATURES

Run the whole workflow (no arguments) or create specific targets (rule or
filenames):

$ snakemake mapped /552 .bam

Execute jobs in parallel up to a given limit of usable cores:

$ snakemake - -cores 40

To run Snakemake on a cluster, only a shared filesystem and a qsub-like
submission command is needed. Here, parameters of the rules can be
forwarded to the clustering engine:

$ snakemake - -c l u s t e r " qsub −pe threaded { threads } "

Summarize all involved files, listing pending updates based on modifica-
tion dates, tool versions and implementation changes:

$ snakemake - -summary | less

Visualize the workflow via graphviz dot:

$ snakemake - -dag | dot | d i sp lay

Force certain rules to re-run:

$ snakemake - -fo rce run count_mirna_expressions

Prioritize a target in the scheduler (for example an urgent dataset):

$ snakemake - - p r i o r i t i z e expressions /552 . expressions . t x t

Finally, Snakemake provides facilities for

• dynamic updates depending on a rule’s output,

• portable HTML5 reports that provide a semantically connected col-
lection of generated figures and tables for collaborators,

• creation of rule libraries that can be included into workflows.

Johannes Köster, Sven Rahmann. "Snakemake - A scal-
able bioinformatics workflow engine". Bioinformatics 2012.

visit Snakemake at
https://bitbucket.org/johanneskoester/snakemake

