On Mercator Research Center Ruhr

Eine Initiative der Stiftung Mercator und
der Universitatsallianz Metropole Ruhr

Johannes Koster, Sven Rahmann

Genome Informatics, University of Duisburg-Essen

We present the g-group index, a g-gram index variant with a particularly small memory footprint, and efficient parallel algorithms for building
and querying the data structure. On top of the g-group index, we developed PEANUT, a massively parallel GPU-based solution to the read
mapping problem. PEANUT is 2 to 10 times faster than its competitors while maintaining a comparable accuracy. The software is available at
http://peanut.readthedocs.org.

Occurs with next-generation sequencing of DNA or RNA: e partitioned into streaming multiprocessors (SM)

e millions of small DNA or RNA reads are produced
e information about their origin in the genome is lost

e read mapping problem: find the likely origin of each read in a known
reference genome

calculating optimal alignments with Smith-
Waterman algorithm (infeasible due to quadratic run-time)

e optimal solution:

e state of the art: use index data structures to find anchor points for
alignment (BWT /FM-Index, g-gram index)

Fig. 1. The read mapping problem.

e each SM executes the same instruction of 32 threads in parallel
e branching (if-else) breaks parallelism
e memory small (e.g. 3GB) and rather slow (because of small caches)

e memory transfer between host and GPU slow

ALU ALU
control

flow
ALU ALU

cache

memory

Fig. 2: CPU vs. GPU.

228

Search for g-gram matches between reads and refer-
ence. A g-gram is a subsequence of length g.

e encode g-grams as integers:

We introduce the g-group index, a variant of the g-gram index with small
memory footprint.

e assign each g-gram ¢ to a g-group ¢ = | g/w|

228 [32

012 3 456 7=

0 228 % 32
— — 228 e for text T', g-group index consists of arrays (I, S, S, O) such that k-th
o for text T', g-gram index consists of arrays (S, O) occurrence position of g-gram g is 8
such that k-th occurrence position of g-gram g is O[S/[S[Z] —I—pOpCO”LL?lt([[i]&(Qj . 1))] 4 /C] (1)
O[Slg] + Kl array of bit vectors GAAA
address array g-group address array
occurrence array q_gram address array I.010110000100101 e
osize O(49 + |T) occurrence array . P
_\ e build and query in parallel using population counts and prefix sums
cee™® (avoiding branching) s .0, 1.5 8
“\e“\O(\J

e worst case size: 2/w - 49+ min{4? |T|} + |T|

smal| memory

footprint, almost
branch-free queries

O 15 22 11 17 308 3 52 31

Fig. 3: Q-group index.

1.2

1.0

0.8

0.6

0.4 load reads into buffer

index size ratio

build a g-group index

0.2

filter hits between reference and index

validate hits with bit-parallel alignment algorithm (Myers G, 1999)

0.0

102 10% 10° 10! 102

N

post-process hits
Fig. 4: Ratio between the size of the g-group index and the g-gram index

write hits

for factor K = % describing ratio between number of possible g-grams Fig. 5. PEANUT algorithm. Different layers run in parallel and are

step 2 to & | |
data resides entirely In
GPU memory, NO

transfers needed

IO « GPU o CPU

and text size. connected by queues.

e occupancy measures the saturation of GPU cores PEANUT provides at least comparably good precision and

recall as other mappers.

e 50 million human paired-end lllumina HiSeq 2000 reads
e 4-core Intel Core i7, NVIDIA Geforce 780, 16GB RAM

e high occupancy: ability to hide memory latency

100 100 mapper mode time [min:sec]

)) PEANUT best-stratum 18:22 18:36 18:31
o) . BWA-MEM best-hit ~ 36:46 36:33 36:35
fo g Bowtie 2 best-hit ~ 54:38 54:22 55:51
* 0t g | - | ——— . | —— CUSHAWS3 pest-hit ~ 390:20 390:15 390:41

> = ot = ot CUSHAW2-GPU best-hit ~ 30:23 30:30 30:34

Toozoe s owomw o2 4831w PEANUT all-hits ~ 254:43 254:49 254:19

RazerS 3 all-hits ~ 900:27 901:33 900:50

Fig. 6: Occupancy vs. thread block size. Fig. 7: Recall and precision vs. error rate.

ETEX TikZposter

