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We present the g-group index, a g-gram index variant with a particularly small memory footprint, and efficient parallel algorithms for building
and querying the data structure. On top of the g-group index, we developed PEANUT, a massively parallel GPU-based solution to the read
mapping problem. PEANUT is 2 to 10 times faster than its competitors while maintaining a comparable accuracy. The software is available at
http://peanut.readthedocs.org.

Occurs with next-generation sequencing of DNA or RNA: e partitioned into streaming multiprocessors (SM)

e millions of small DNA or RNA reads are produced
e information about their origin in the genome is lost

e read mapping problem: find the likely origin of each read in a known
reference genome

calculating optimal alignments with Smith-
Waterman algorithm (infeasible due to quadratic run-time)

e optimal solution:

e state of the art: use index data structures to find anchor points for
alignment (BWT /FM-Index, g-gram index)

Fig. 1. The read mapping problem.

e each SM executes the same instruction of 32 threads in parallel
e branching (if-else) breaks parallelism
e memory small (e.g. 3GB) and rather slow (because of small caches)

e memory transfer between host and GPU slow
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Fig. 2: CPU vs. GPU.
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Search for g-gram matches between reads and refer-
ence. A g-gram is a subsequence of length g.

e encode g-grams as integers:

We introduce the g-group index, a variant of the g-gram index with small
memory footprint.

e assign each g-gram ¢ to a g-group ¢ = | g/w|
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Fig. 3: Q-group index.
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Fig. 4: Ratio between the size of the g-group index and the g-gram index
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e occupancy measures the saturation of GPU cores PEANUT provides at least comparably good precision and

recall as other mappers.

e 50 million human paired-end lllumina HiSeq 2000 reads
e 4-core Intel Core i7, NVIDIA Geforce 780, 16GB RAM

e high occupancy: ability to hide memory latency
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Fig. 6: Occupancy vs. thread block size. Fig. 7: Recall and precision vs. error rate.
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