
LATEX TikZposter

Massively parallel read mapping on GPUs
with the q-group index and PEANUT

Johannes Köster, Sven Rahmann
Genome Informatics, University of Duisburg-Essen

Massively parallel read mapping on GPUs
with the q-group index and PEANUT

Johannes Köster, Sven Rahmann
Genome Informatics, University of Duisburg-Essen

Eine Initiative der Stiftung Mercator und
der Universitätsallianz Metropole Ruhr

Mercator Research Center Ruhr

Introduction

We present the q-group index, a q-gram index variant with a particularly small memory footprint, and efficient parallel algorithms for building
and querying the data structure. On top of the q-group index, we developed PEANUT, a massively parallel GPU-based solution to the read
mapping problem. PEANUT is 2 to 10 times faster than its competitors while maintaining a comparable accuracy. The software is available at
http://peanut.readthedocs.org.

Read Mapping Problem

Occurs with next-generation sequencing of DNA or RNA:
•millions of small DNA or RNA reads are produced

• information about their origin in the genome is lost

• read mapping problem: find the likely origin of each read in a known
reference genome

• optimal solution: calculating optimal alignments with Smith-
Waterman algorithm (infeasible due to quadratic run-time)

• state of the art: use index data structures to find anchor points for
alignment (BWT/FM-Index, q-gram index)

?
?

?

Fig. 1: The read mapping problem.

GPU Architecture

• partitioned into streaming multiprocessors (SM)

• each SM executes the same instruction of 32 threads in parallel

• branching (if-else) breaks parallelism

•memory small (e.g. 3GB) and rather slow (because of small caches)

•memory transfer between host and GPU slow

control
flow

ALUALU

ALU ALU

cache

memory

Fig. 2: CPU vs. GPU.

Q-Gram Index

Search for q-gram matches between reads and refer-
ence. A q-gram is a subsequence of length q.

• encode q-grams as integers:
ACGT = 11 10 01 00 = 228

• for text T , q-gram index consists of arrays (S,O)
such that k-th occurrence position of q-gram g is

O[S[g] + k].

address array
occurrence array

• size O(4q + |T |)

Q-Group Index

We introduce the q-group index, a variant of the q-gram index with small
memory footprint.

• assign each q-gram g to a q-group i = bg/wc
• for text T , q-group index consists of arrays (I, S, S ′, O) such that k-th

occurrence position of q-gram g is

O[S ′[S[i] + popcount(I [i]&(2j − 1))] + k].

array of bit vectors
q-group address array
q-gram address array

occurrence array

• build and query in parallel using population counts and prefix sums
(avoiding branching)

•worst case size: 2/w · 4q +min{4q, |T |} + |T |

228

0 1 2 3 4 5 6 7...

0
1
0
0
0
1

228 / 32

228 % 32

found

0000 0010

2 2 3

0 5 8

15 3 52 31

GAAA

1

0

11 17 30822

0101I

S

S'

O

...

...

...

...

Fig. 3: Q-group index.

10-2 10-1 100 101 102

K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

in
d
e
x
 s

iz
e
 r

a
ti

o

Fig. 4: Ratio between the size of the q-group index and the q-gram index

for factor K = 4q

|T | describing ratio between number of possible q-grams

and text size.

stop

postprocessing

filtration

validation
filtration

validation
filtrationvalidationfiltration

va
lid

at
io

n
fil

tra
to

n
va

lid
at

io
n

filt
ra

tio
n

validation

lo
ad

re
ad sequences

w
rit

e
hi

ts

start

Fig. 5: PEANUT algorithm. Different layers run in parallel and are

connected by queues.

PEANUT Algorithm

1. load reads into buffer

2. build a q-group index

3. filter hits between reference and index

4. validate hits with bit-parallel alignment algorithm (Myers G, 1999)

5. post-process hits

3. write hits

• IO • GPU • CPU

Occupancy

• occupancy measures the saturation of GPU cores

• high occupancy: ability to hide memory latency

0 100 200 300 400 500 600

block size

0.0

0.2

0.4

0.6

0.8

1.0

o
cc

u
p
a
n
cy

filter_reference

create_queries_index

validate_hits

Fig. 6: Occupancy vs. thread block size.

Accuracy

PEANUT provides at least comparably good precision and
recall as other mappers.

0 2 4 6 8 10 12 14

maximum error rate

80

85

90

95

100

re
ca

ll

bwamem

bowtie2

ngm

cushaw3

cushaw2-gpu

peanut

0 2 4 6 8 10 12 14

maximum error rate

80

85

90

95

100

p
re

ci
si

o
n

bwamem

bowtie2

ngm

cushaw3

cushaw2-gpu

peanut

Fig. 7: Recall and precision vs. error rate.

Performance

• 50 million human paired-end Illumina HiSeq 2000 reads

• 4-core Intel Core i7, NVIDIA Geforce 780, 16GB RAM

mapper mode time [min:sec]

PEANUT best-stratum 18:22 18:36 18:31
BWA-MEM best-hit 36:46 36:33 36:35
Bowtie 2 best-hit 54:38 54:22 55:51
CUSHAW3 best-hit 390:20 390:15 390:41
CUSHAW2-GPU best-hit 30:23 30:30 30:34

PEANUT all-hits 254:43 254:49 254:19
RazerS 3 all-hits 900:27 901:33 900:50

exceeds GPU

memory
small memory
footprint, almost
branch-free queries

step 2 to 4:

data resides entirely in

GPU memory, no

transfers needed

